检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学计算机应用工程研究所,510640
出 处:《中国科技信息》2005年第12C期178-178,181,共2页China Science and Technology Information
摘 要:支持向量机(SVM)是在统计学习理论(SLT)的基础上发展起来的一种新的机器学习方法。它基于结构风险最小化原则,能有效地解决过学习问题,具有良好的推广性能和较好的分类精确性。本文首先介绍统计学习理论和支持向量机的概念,然后进一步论述了SVM在模式分类中的多方面的应用。
关 键 词:统计学习理论 支持向量机(SVM) 结构风险最小化原则 机器学习方法 学习问题 推广性能 模式分类 精确性
分 类 号:TB114[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117

