检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学信息工程学院
出 处:《软件学报》2005年第8期1415-1422,共8页Journal of Software
基 金:No.60225015国家自然科学基金;No.BK2003017江苏省自然科学基金;No.NCET-0404962004年度国家教育部新世纪优秀人才计划;2005年度国家教育部科学研究重点项目~~
摘 要:针对模糊聚类神经网络FCNN(fuzzyclusteringneuralnetwork)对例外点(outliers)敏感的缺陷,通过引入Vapnik’sε-不敏感损失函数,重新构造网络的目标函数,并根据拉格朗日优化理论推导出新的鲁棒模糊聚类神经网络及其算法(robustfuzzyclusteringneuralnetworks,简称RFCNN).RFCNN有效地克服了FCNN对例外点敏感之缺点并且能得到合理的聚类中心.仿真实验结果表明,RFCNN较之于FCNN有更好的鲁棒性.In this paper a new robust fuzzy clustering neural networks (RFCNN) is presented to resolve the sensitivity of the fuzzy clustering neural network (FCNN) to outliers in real datasets. The new objective function of RFCNN is obtained by introducing Vapnik's e-insensitive loss function, and RFCNN's update rules are derived by using Lagrange optimization theory. Compared with the FCNN algorithm, RFCNN is much more robust to outliers in the datasets. Experimental results demonstrate the effectiveness of RFCNN.
关 键 词:模糊聚类 神经网络 Ε-不敏感损失函数 例外点 鲁棒性
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49