检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《科学通报》1995年第3期198-200,共3页Chinese Science Bulletin
基 金:国家自然科学基金资助项目
摘 要:文献[1]在谈到向日葵方程(?)+(a/r)(?)+(b/r)sinα(t-r)=0的Hopf分支问题时写到:“我们可以把(1)式写为(?)=F(a,b,r,z).若我们选取r为参数,则由于r进入了z_t的定义,故F对r的依赖性是复杂的,所以我们取a为参数.”众所周知,滞量是引起时滞微分方程和常微分方程差异的关键所在,所以用滞量作参数讨论时滞方程分支问题是很有意义的.本文就是以时滞r为参数,给出(1)式的Hopf分支存在的条件,同时还明确地给出其Hopf分支方向,分支周期解的渐近表达式及其稳定性.关于(1)式的导出及意义可参阅文献[1~3].
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185