检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学机器人研究所,北京100083
出 处:《机器人》2005年第6期481-485,501,共6页Robot
摘 要:为了解决单模糊控制器的“规则库爆炸”问题,设计了一种分层的模糊控制器,用于指导移动机器人通过未知环境到达指定的目标点.控制器根据8个超声传感器的信息和目标相对于机器人的方位确定机器人的运动.首先,每个超声传感器的信息被输入到危险度模糊控制器(DFC)中,产生关于周围环境中障碍物危险度的模糊向量.这些模糊向量经过融合与归一化处理后分别输入到上层的速度模糊控制器(VFC)和角速度模糊控制器(RFC)的推理机中.VFC根据目标的距离和障碍物的危险度控制机器人的前进速度.RFC根据目标的方向和障碍物的危险度控制机器人的转向,并采用最大隶属度法的反模糊化策略解决“对称不确定”问题.仿真与实验结果证明了所设计的模糊控制器简单而有效.This paper presents a hierarchical fuzzy controller for mobile robot navigating from an initial position to a target point through unknown environments. Eight sonar sensors are mounted on the robot to detect obstacles so that the mobile robot can navigate safely. Sonar data and target information are processed by the two-stage fuzzy system to generate the control commands. Firstly, the danger fuzzy controller (DFC) is used for each sonar sensor to judge the danger degree of the detected obstacles. Then, all the outputs of the inference engine are analyzed and normalized by the combination behavior. Finally, the danger information as well as the fuzzified target information is induced by the velocity fuzzy controller ( VFC ) and the rotation fuzzy controller (RFC) respectively to determine the motion of the robot. Maximum defuzzification method is used to solve the “symmetric hesitation” problem. Simulations and experiments validate the performance and effectiveness of the proposed approach.
分 类 号:TP24[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222