检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张著洪[1]
出 处:《贵州师范大学学报(自然科学版)》2005年第4期64-68,共5页Journal of Guizhou Normal University:Natural Sciences
基 金:贵州大学自然科学基金(200101007)
摘 要:研究Banach空间中受极小映射扰动的非线性抛物型微分包含积分解的生存性及正则性.利用非线性半群及极小映射的性质和不动点定理,证明其积分解的生存性,获其积分解之间按Housdorff距离的连续性.借助Lip-schitz条件、绝对连续函数的性质及Banach空间的自反严格凸性,获其积分解的唯一性且是强解.所获结果对受此类微分包含约束的分布参数最优控制问题的探讨奠定理论基础,同时有助于研究相关的非线性微分包含。Existence and regularity of integral solutions are studied for nonlinear parabolic differential inclusions involving a m-dissipative operator and minimal mappings in Banach spaces. The existence is proved through nonlinear semigroup, properties of minimal mappings and fixed-point theorems, while continuity of the solutions is examined in the sense of Housdorff distance. On the other hand, uniqueness of integral solution and its regularity are obtained by means of Lipachitz conditions, properties of absolute continuous mappings, reflexivity and strict convexity of Banach spaces. All results acquired not only help solve distribution parameter optimal control problems subject to the differential inclnsions, but also study the problems of other differential inclusions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30