检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学自动化系
出 处:《控制与决策》1996年第1期22-27,共6页Control and Decision
基 金:国家教委博士点基金
摘 要:讨论系统辨识神经网络算法的鲁棒性问题。通过构造新的动态鲁棒目标函数得到的RBP算法,能不断估计逼近精度,自动将品质好的样本置于强化学习域,并能有效地抵抗噪声干扰。实验结果表明,该算法具有鲁棒性强、收敛快、计算方便等特点。In this paper, the problem on robust learning algorithm of the neural networks for system identification is discussed. By constructing a new dynamic robust objective function, the RBP algorithm can continually estimate the approximation accuracy, and put the good samples into the domain of intensive learning, and can effectively resist to the noise perturbation. Experiment results show that the RBP algorithm is rubust,fast and convenient in iterative computation.
分 类 号:O231[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117