Sylow-正规化子属于群系F的有限群  

Finite Groups Whose Sylow-Normalizers Belong to a Formation F

在线阅读下载全文

作  者:陈重穆[1] 

机构地区:[1]西南师范大学数学系

出  处:《数学学报(中文版)》1996年第4期456-459,共4页Acta Mathematica Sinica:Chinese Series

摘  要:设F是可解的,子群闭的,由{f(P)}所局部定义的群系,Fp是由{f(q)}定义的p-局部定义群系.N为幂零群系.本文证明了:1)设F满足:任一群属于F,当且仅当,对每p.其p-Sylow-正规化子属于Fp.于是“群G∈N.F(幂零由F的扩张)的充要条件是,对每P,其p-Sylow-正规化子的Fp剩余次正规于G内.2)群G为超可解的充要条件是,对每p,其p-Sylow-正规化子为p-超可解,且其幂零剩余次正规于G内.若对每p,群G的p-Sylow子群无商群与p2-次对称群的p-Sylow子群同构,则称G为B-群.3)设G为B-群,又群系F含于σ-Sylow塔群系内.于是①G∈F,当且仅当,对每p,G的p-Sylow-正规化属于Fp;②G∈N·F,当且仅当,对每p,G的p-Sylow-正规化子的Fp剩余在G内次正规.Suppose that F is a solvable and subgroups closed formation locally defined by{f(p)}. Fp is the formation locally defined byThe principal results of this paper as follow:1) If F holds that a group belongs to f when and only when for every prime p whosep-Sylow-normalizers belong in Fp, then a group G ∈ N. F (extentions of a nilpotent group bya F-group) when and only when for every prime p the Fp-residues of p-Sylow-normalizers aresubnormal in G.2) A group G is supersolvable when and only when for every prime p the p-Sylow-normalizersare supersolvable and whose nilpotent residues are subnormal in G.

关 键 词:正规化子 超可解群 有限群 SYLOW子群 

分 类 号:O152.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象