一类不能作为自同构群的奇阶群  被引量:4

Some Groups of Odd Order Which Cannot Function as Automorphism Groups

在线阅读下载全文

作  者:李世荣[1] 

机构地区:[1]广西大学数学系

出  处:《数学学报(中文版)》1996年第4期524-530,共7页Acta Mathematica Sinica:Chinese Series

基  金:国家自然科学基金;广西自然科学基金

摘  要:本文考虑如下问题:怎样的有限群可以作为另一个有限群的全自同构群?我们首先证明,若有限群K有一个正规Sylowp-子群使得|K:Z(K)|p=p2,那么K有2阶自同构.利用这个结果,我们证明了,若奇阶群G具有阶Psm(1≤s≤3),p为|G|的最小素因子,pm,m无立方因子,则G不可能作为全自同构群.The following problem is considered: what kind of finite groups can function as fullautomorphism group of a finite group? We first show that if the finite group K has a normalSylow p-subgroup such that |K/Z(K)|p=p2, then K has an automorphism of order 2. Usingthis result, we have shown that if G is an odd order group with order psm (1 ≤s ≤3), wherep is the smallest prime divisor of |G|, p m and m is cubefree, then G cannot function as fullautomorphism group.

关 键 词:有限群 全自同构群 对合自同构 自同构群 奇阶群 

分 类 号:O152.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象