检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京交通大学计算机与信息技术学院,北京100044
出 处:《北京交通大学学报》2006年第2期97-100,共4页JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基 金:铁道部重点开发资助项目(2005002)
摘 要:在经典特征选择算法的基础上,提出一种带专业词库的特征选择方法.在训练分类模型的时候,适当加重属于专业词汇的特征的权重.这种方法能够有效地避免特征选择时误删有用的低频词,因此,适合用于短文本的分类(电子邮件等).实验结果表明,本方法在抽取特征维数较少时,分类准确率提高约3%.Based on the classical feature selection algorithms, this paper proposes a new approach to improve feature selection by taking domain terms into consideration. When training a model, the features of a certain class will be weighted (added weight) if they turn up in a given term library. This method effectively avoids canceling low frequent but genuinely useful features by mistake. Thus, it is efficient especially for short text (such as mails) classification and can reduce the feature dimension.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.194.164