检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学理学院
出 处:《黑龙江大学自然科学学报》2006年第2期188-191,共4页Journal of Natural Science of Heilongjiang University
基 金:SupportedbytheNationalNaturalScienceFoundationofChina(40374046)
摘 要:讨论了非线性反问题的求解问题,将具有大范围收敛特性的同伦方法引入到非线性反问题的求解之中,籍此克服非线性反问题常规求解过程中局部收敛的缺陷;结合吉洪诺夫正则化方法,以解决计算Frechet导数时病态的问题.在此基础上,提出了一种用于求解非线性反问题的参数微分正则化方法,给出其构造过程,并且证明了参数微分正则化方法解的存在性和收敛性.The problem of solving nonlinear inverse problem is considered. In order to overcome the defects of local convergence of conventional methods, the homotopy method which has widely convergent property is applied, and to avoid the ill - posed inversion of the Frechet derivate operator, the Tikhonov regularization method is also introduced here. On the basis of homotopy and regularization methods, a widely convergence inversion scheme for solving nonlinear inverse problems called parameter differential regularization method is developed. The formation of it and the proof of its convergence theorem are given.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63