具有非局部源的互惠模型抛物系统解的性质  

Behaviors of solutions to a parabolic system describing a cooperating model with nonlocal sources

在线阅读下载全文

作  者:侯燕[1] 刘佳[1] 耿春梅[2] 

机构地区:[1]扬州大学数学科学学院,江苏扬州225002 [2]扬州教育学院数学系,江苏扬州225002

出  处:《扬州大学学报(自然科学版)》2006年第2期6-10,共5页Journal of Yangzhou University:Natural Science Edition

基  金:江苏省教育厅自然科学基金资助项目(05KJB110154)

摘  要:研究了两种群Lotka-V o lterra模型的具有非局部源的弱耦合反应扩散方程组.考虑非局部项对解的性质的影响,说明它对种群生存状态的作用.采用不变区域法、比较原理结合相应的常微分方程结论、技巧探讨解的整体存在性与爆破问题.结果表明,当种群自身竞争较强时,解整体存在;反之,则有可能爆破.A two-species Lotka-Volterra model with nonlocal sources of weakly coupled reaction-diffusion systems is studied. The influence of non-local source on the properties of solutions is considered and how the non-local source affects the permanence and blowup of the species is shown. The global existence and blowup results of solutions are given using upper and lower solutions, comparison principle and related results and techniques from ordinary differential equations. It is shown that global solutions exist if the intra-specific competitions are strong, whereas blowup solutions may exist if the intra-specific competitions are weak.

关 键 词:生物种群 抛物系统 非局部 爆破 

分 类 号:O175.26[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象