检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁国锋[1] 王孙安[1] 林廷圻[1] 史维祥[1]
机构地区:[1]西安交通大学机械工程学院机械电子系
出 处:《信息与控制》1996年第6期373-380,共8页Information and Control
基 金:国家自然科学基金
摘 要:提出了一种高阶CMAC(HCMAC)神经网络.它是采用高阶的径向基函数作为接收域函数,为了进一步增强对输入模式的表达,还可以用接收域函数与输入模式向量构成张量积,这时产生的是高维的增强表达,同时HCMAC沿用CMAC的地址映射方法.由于高阶接收域函数的引入,使其可以获得较CMAC连续性强且有解析微分的复杂函数近似.HCMAC在不改变CMAC简单结构的基础上较RBF网络有计算量少,学习效率高等优点.文中还首次将用于参数估计的Kalman滤波学习算法引入到这种类CMAC的网络学习中,这使HCMAC有更高的学习速度.通过仿真研究表明HCMAC除拥有CMAC和RBF网络两者的优点外。In this paper, a high order CMAC(HCMAC) neural network is proposed, in which the high order activation functions are utilized as the receptive field functions. The method of address mapping used by CMAC is adopted in the new network. Because of enhancement of the input pattern, the physical address in HCMAC is reduced highly, and by using HCMAC the approximation of complex functions can be obtained which is more continuous than using CMAC and has analytic derivatives. As a result of these characters, the computing amount and learning time are reduced more than RBF neural networks. This paper also introduces originally the Kalman filter algorithm to the CMAC like networks, so learning effectiveness is improved further. By simulating, it is proved that HCMAC is feasible in many fields.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42