Hamilton系统的大范围周期轨道的估计  

Estimation of Large-Scale Periodic Orbits in Hamiltonian System

在线阅读下载全文

作  者:何冰洁[1] 蔡新中[1] 

机构地区:[1]上海工程技术大学高等职业技术学院,上海200437

出  处:《上海工程技术大学学报》2006年第2期170-173,共4页Journal of Shanghai University of Engineering Science

摘  要:Hamilton系统的相轨道位于正则值所确定的等能曲面上,而系统的大范围周期轨道可以代表等能曲面的同调类,这些同调类一般非平凡。而等能曲面的拓扑性质又由相空间的拓扑性质和Hamilton函数的大尺度性质决定,用这两种性质估算了受外力的刚体运动的等能曲面的第1同调群的秩。用同伦论、同调论和Morse理论把已有证明中的不足之处加以改进,得出基本定理的新的证明。The phase orbits of a Hamiltonian system are on the equi-energy'level surface which is determined by the regular value. The large-scale periodic orbits of the system can represent the homology classes, which are generally non-trivial,on the equi-energy level surface and the topological properties of the equi-energy level surface are determined by that of the phase space and the large-scale properties of Hamiltonian function. These properties were used for estimation of the rank of the first homology group of the equi-energy level surfaces about the motion of a rigid body under external force. The proof was improved by the theory of differential topology and algebra topology.

关 键 词:MORSE理论 同调类 HAMILTON系统 刚体运动 

分 类 号:O189[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象