检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海工程技术大学高等职业技术学院,上海200437
出 处:《上海工程技术大学学报》2006年第2期170-173,共4页Journal of Shanghai University of Engineering Science
摘 要:Hamilton系统的相轨道位于正则值所确定的等能曲面上,而系统的大范围周期轨道可以代表等能曲面的同调类,这些同调类一般非平凡。而等能曲面的拓扑性质又由相空间的拓扑性质和Hamilton函数的大尺度性质决定,用这两种性质估算了受外力的刚体运动的等能曲面的第1同调群的秩。用同伦论、同调论和Morse理论把已有证明中的不足之处加以改进,得出基本定理的新的证明。The phase orbits of a Hamiltonian system are on the equi-energy'level surface which is determined by the regular value. The large-scale periodic orbits of the system can represent the homology classes, which are generally non-trivial,on the equi-energy level surface and the topological properties of the equi-energy level surface are determined by that of the phase space and the large-scale properties of Hamiltonian function. These properties were used for estimation of the rank of the first homology group of the equi-energy level surfaces about the motion of a rigid body under external force. The proof was improved by the theory of differential topology and algebra topology.
关 键 词:MORSE理论 同调类 HAMILTON系统 刚体运动
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.102.192