一类非线性发展方程的精确孤波解  被引量:5

EXPLICIT EXACT SOLITARY WAVE SOLUTIONS TO A CLASS OF NONLINEAR EVOLUTION EQUATIONS

在线阅读下载全文

作  者:张卫国[1] 

机构地区:[1]长沙铁道学院数力系

出  处:《高校应用数学学报(A辑)》1996年第4期399-408,共10页Applied Mathematics A Journal of Chinese Universities(Ser.A)

摘  要:本文首先求出了非线性常微分方程u″(ξ)+mu2(ξ)+nu3(ξ)+pu(ξ)=c(Ⅰ)和u″(ξ)+ru′(ξ)+mu2(ξ)+nu3(ξ)+pu(ξ)=c(Ⅱ)的显式精确解.进而求出了组合BBM方程、Burgers方程与组合BBM方程混合型的钟状孤波解和扭状孤波解,同时还求出了广义Boussinesq方程和广义KP方程的钟状和扭状孤波解.文中指出了其行波解可化为(Ⅰ)的发展方程既有钟状又有扭状孤波解,而其行波解可化为(Ⅱ)的发展方程没有钟状孤波解.In this paper, first we establish explicit exact solutions of the nonlinear ordinary differential equations u″(ξ)+mu 2(ξ)+nu 3(ξ)+pu(ξ)=c(Ⅰ) and u″(ξ)+ru′(ξ)+mu 2(ξ)+nu 3(ξ)+pu(ξ)=c(Ⅱ) . Secondly, we obtain bell profile and kink profile solitary wave solutions to the generalized BBM equation u t+auu x+bu 2u x+ru xx -u xxt =0 , and generalized Boussinesq equation u tt -x(u x+2auu x+3bu 2u x+ru xx +u xxx )=0 , and generalized KP equation x(u t+auu x+bu 2u x+ru xx +u xxx )+3k 2u yy =0 . Finally, we point out that the evolution equations with traveling wave solutions satisfying equation (Ⅰ) not only have bell profile solitary wave solutions but also have kink profile ones, the evolution equations with traveling wave solutions satisfying equation (Ⅱ) have no bell profile solitary wave solutions.

关 键 词:非线性 发展方程 孤波解 精确解 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象