检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张楠[1] 周光宏[1] 李业国[1] 徐幸莲[1] 程文新 岳新叶
机构地区:[1]南京农业大学农业部农畜产品加工与质量控制重点开放实验室,江苏南京210095 [2]河南双汇集团技术中心,河南漯河462000
出 处:《食品科学》2006年第9期58-62,共5页Food Science
基 金:国家科技攻关项目(BA501A11);江苏省科技攻关项目(BE2004314);江苏省攻关招标项目(BS2002051)
摘 要:应用PG-100智能化猪胴体分级仪和人工分级方法对556头商品肉猪进行了相关性状的测定与分析,分别建立了智能分级方法和人工分级方法的最优猪胴体瘦肉率预测模型(智能分级:y=60.325-0.578x1+0.168x2,x1为倒数3~4肋骨间离背中线6~7cm处的脂肪厚度,x2为倒数3~4肋骨间离背中线6~7cm处的肌肉厚度,方程R2=0.864,RSD=2.33%;人工分级:y=57.235-0.575x7+0.207x10,x7为腰荐膘厚,x10为三角肌的肌肉厚度,方程R2=0.859,RSD=2.4%),从而为制定符合我国国情的《猪胴体分级标准》建立了良好的技术操作平台。Some carcass characteristics of 556 pigs were assayed with Destron PG-100 grading probes and manual grading skill. Prediction models of lean meat percentage of pig carcasses were obtained(Prediction models of automatic grading probes: y=60.325-0.578 x1+0.168 x2, where x1 was fat thickness assayed at the 3/4 last rib, and 6-7cm offthe mid-line, while x2 was the muscle depth at the 3/4 last rib, and 6-7cm off the mid-line with R2=0.864 and RSD=2.33%. Prediction models of manual grading skill: y=57.235-0.575 x7+0.207 x10, where x7 was the fat thickness measured at sacrum, and x10 was the muscle depth from muscles gluteus bottom to sacrum. So the technical supports were set up for Pork Carcasses Grading Standard in our country.
关 键 词:PG-100 猪胴体 智能化分级 人工分级 瘦肉率 预测模型
分 类 号:TS251.7[轻工技术与工程—农产品加工及贮藏工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.125