检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《上海航天》2006年第5期55-58,共4页Aerospace Shanghai
摘 要:为消除传统方法在样本数较少时确定模型的不足,提出了一种在贝叶斯准则下将可逆跳MCMC法用于AR模型的阶次估计,以抽样的方法解决AR模型对时间序列拟合时的阶数不确定问题。给出了阶次估计算法的公式和步骤。仿真试验和某陀螺漂移模型估计的结果表明,该法预测结果与实际较为吻合。但为进一步提高预测精度,还需研究平稳性和初始状态的影响。To overcome the disadvantages of classic method to predict AR model with small species, the reversible jump Markov chain Monte Carlo (MCMC) was put forward to estimate the order for AR model under Bayesian selection in this paper. The order uncertainness of AR model in fitting a time sequence was solved by sampling. The equation and steps of the order estimation algorithm were presented. The simulation result and estimation for some gyro drift showed that prediction of this method was agreed with the data set. But to improve the accuracy of the prediction, the effect of the smooth and initial state should be studied more.
关 键 词:AR模型 阶次 贝叶斯准则 MCMC 可逆跳MCMC 陀螺漂移
分 类 号:O212[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.94