检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湘潭大学数学与计算科学学院 [2]湖南科技大学数学与计算科学学院,湘潭411201
出 处:《高等学校计算数学学报》2006年第4期299-306,共8页Numerical Mathematics A Journal of Chinese Universities
摘 要:1引言 有限元解的渐近展式是提高微分方程数值解精度的重要工具,比如亏量校正和外推就是建立在有限元解的渐近展式的基础之上.许多作者对此进行了大量的研究(见[1]-[4D,特别是文[1],提出了在研究有限元解的渐近展式中十分有用的能量嵌入技巧.本文利用能量嵌入定理得到了四阶方程两点边值问题Hermite有限元解及其二阶平均导数的渐近展式,进一步我们还讨论了它们的Richardson外推公式.In this paper, the Hermite finite element approximation for two-point boundary value problem of fourth-order differential equation is discussed. We not obtain only the asymptotic expansions by the method of energy embedment as following: uh(xi) = u(xi)+h^4W(xi)+O(h^6),but also the formulas of the Richardson extrapolation. An analogous expansion also holds for ^-uh″(x)-the average of the second order derivative of the approximate solution.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145