检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:乔节增[1] 张建国[2] 韩效宥[2] 石燕霞[2]
机构地区:[1]内蒙古财经学院基础部,呼和浩特010051 [2]北方工业大学理学院,北京100041
出 处:《数学的实践与认识》2007年第6期166-170,共5页Mathematics in Practice and Theory
基 金:北京市教委科技基金(KM200610009004)
摘 要:利用Ho lder不等式研究一类非线性项具时滞的二阶中立型时滞微分方程{r(t)[y(t)+p(t)y(t-τ)]′2m+1}′+q(t)f[y(t-σ)]=0(t>t0)的振动性.给出了该方程的解振动的若干充分条件,所得结果推广了已有的相应结论.It investigates the oscillation of one kind of non-linear second-order neutral differential equation with delay {r(t)[y(t)+p(t)y(t-τ)]^2m+1}'+q(t)f[y(t-σ)]=0(t〉to) in this paper using Holder inequality, and we give several sufficient conditions about oscillation for this kind of equation, the conclusions which we draw generalize the part conclusions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229