检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]解放军信息工程大学信息工程学院,河南郑州450002
出 处:《计算机工程与设计》2007年第12期2909-2910,2913,共3页Computer Engineering and Design
基 金:解放军某部技术攀登基金项目(SP200503099)
摘 要:多分类器协同合作克服了单个分类器识别效果不理想,适用范围较窄或对使用环境要求较高的不足,并为研制更高性能的分类器,提供了解决问题的另一个途径。提出了一种基于SVM的多分类器说话人识别系统,该系统的识别框架基于多分类器的协同工作。该多分类器系统采用了ANN(artificial neural networks)、GMM(gaussian mixed model)分类器和子带结构分类器,参数选取包括MFCC(mel frequency cepstrum coefficient)、LPCC(linear prediction cepstrum coefficient)。多分类器融合采用SVM方法。本系统在超短波信道(15 db)的实际应用中达到94%的识别率。Multi-classifier structure overcomes the shortcomings of single classifier, such as low recognition rate, narrow application field and critical demand of environment. A fusion method based on SVM is proposed. The involved classifiers include ANN, GMM, sub-band classifiers, etc. A practical speaker recognition system based on multi-classifier structure is presented. The input features of classifiers contain MFCC, LPCC. In practical application, the recognition rate of the system achieves 94 % in environment of super short wave (SNR 15 db).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145