检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]吉林大学计算机科学与技术学院 [2]吉林大学数学学院,长春130012
出 处:《计算机学报》2007年第8期1379-1388,共10页Chinese Journal of Computers
基 金:国家自然科学基金(60573128);教育部高校博士点基金(20060183043)资助~~
摘 要:随着知识发现与数据挖掘领域数据量的不断增加,为了处理大规模数据,scaling up学习成为KDD的热点研究领域.文中提出了基于Hebb规则的分布式神经网络学习算法实现scaling up学习.为了提高学习速度,完整数据集被分割成不相交的子集并由独立的子神经网络来学习;通过对算法完整性及竞争Hebb学习的风险界的分析,采用增长和修剪策略避免分割学习降低算法的学习精度.对该算法的测试实验首先采用基准测试数据circle-in-the-square测试了其学习能力,并与SVM,ARTMAP和BP神经网络进行比较;然后采用UCI中的数据集US-Census1990测试其对大规模数据的学习性能.In the fields of knowledge discovery and data mining the amount of data available for building classifiers or regression models is growing very fast. Therefore, there is a great need for scaling up inductive learning algorithms that are capable of handling very-large datasets and, simultaneously, being computationally efficient and scalable. In this paper a distributed neural net- work based on Hebb rule is presented to improve the speed and scalability of inductive learning. The speed is improved by doing the algorithm on disjoint subsets instead of the entire dataset. To avoid the accuracy being degraded as compared to running a single algorithm with the entire data, a growing and pruning policy is adopted, which is based on the analysis of completeness and risk bounds of competitive Hebb learning. In the experiments, the accuracy of the algorithm is tested on a small benchmark (circle-in-the-square) and compared with SVM, ARTMAP and BP neural network. The performance on the large dataset (USCensus1990Data) is evaluated on the data from UCI repository.
关 键 词:scaring up 数据分割 HEBB规则 分布式学习 竞争学习
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.46.174