检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中科技大学电子科学与技术系,湖北武汉430074
出 处:《华中科技大学学报(自然科学版)》2007年第9期118-120,128,共4页Journal of Huazhong University of Science and Technology(Natural Science Edition)
基 金:武汉市科学技术局资助项目(20041003068-02)
摘 要:针对误差反向传播(BP)算法和遗传算法各自的优点和不足,提出了遗传算法优化神经网络技术:利用遗传算法的全局搜索能力,对神经网络连接权进行优化,以遗传算法优化的初值作为BP神经网络的初始权值,再用BP算法训练网络.优化后的BP网络其误差的递减速度和收敛速度都比标准BP网络快,而且对学习速率调整要求更少.将遗传神经网络应用于混合气体定量识别的训练中,得到的最大误差由20.7%降为12.1%,平均误差从5.4%降为3.5%,识别效果得到了提高.A genetic algorithm optimizing neural network (GA-NN) is given, after genetic algorithm and back-propagation (BP) neural network were studied. Optimizing the weights of neural network with the character of local search ability of genetic algorithin, the optimized value was used as the initial weights of the back-propagation neural network, and then the network was trained by the backpropagation method. The results show that the convergence speed and precision of genetic algorithm optimizing neural network are better than that of the single algorithm. The application of genetic algorithm optimizing neural network to the recognition of multi-gas validates that the method improved the detection effect of multi-gas with reducing the maximal error and average error from 20. 7 % and 5.4 % to 12.1 % and 3.5 %.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117

