检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《青岛大学学报(自然科学版)》2007年第3期17-21,共5页Journal of Qingdao University(Natural Science Edition)
摘 要:考虑离散时间时变线性系统稳定性,其时变的系统矩阵在一个由已知顶点矩阵所构成的多胞体中。通过应用参数依赖Lyapunov函数(涉及参数增量上界),给出一个由线性矩阵不等式(LMI)表述的判据,以判别系统的鲁棒稳定性,用到参数依赖Lyapunov函数及参数增量上界。与二次稳定性及定常参数依赖的Lyapunov函数方法相比较,所得结果不仅把保守性降到一个更低水平,而且作为推论导出文献已有结果。对算例所做的比较计算证实了新方法的优越性。The stability of time-varying discrete-time linear systems with the time-varying system matrices in a polytope domain that is a convex combination of finite vertex matrices was considered. The paper presents a criterion written in linear matrix inequalities (LMIs) to test the robust stability of the system by using a parameter-dependent Lyapunov function that deals with bounds of parameter increments. Compared with the quadratic stability and the constant-parameter-dependent Lyapunov function approaches, our result not only reduces the conservation to a lower level, but also leads to prior results as our corollaries. At last, an example calculated as compared with known approaches shows the advantage of the new approach.
关 键 词:离散时间线性参变系统 鲁棒稳定性 参数依赖LYAPUNOV函数
分 类 号:O231[理学—运筹学与控制论] TP13[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185