检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡庆云[1]
出 处:《河海大学学报(自然科学版)》2007年第6期735-738,共4页Journal of Hohai University(Natural Sciences)
摘 要:研究用差分法求解自治的发展方程初边值问题时稳定性和收敛性之间的联系.引入反投影算子将发展方程初边值问题的差分格式转化为与初值问题差分格式类似的逐步推进的形式,从而得出:满足Von Neumann条件的差分格式是稳定的格式;在相容条件下,差分格式若稳定(或满足VonNeumann条件)则格式收敛,且对古典解的差分逼近有误差估计式,不再需要线性的条件.A study was made on the relationship between the stability and convergence when the difference method was used to solve the initial boundary value problem of the autonomous evolution equation. The difference schema of the initial boundary value problem was converted to the step-by-step form, which was similar to the difference schema of the initial value problem. It is concluded that the difference schema satisfying the Von Neumann condition is a stable schema, and that, under the consistency condition, such stable schema is convergent. Moreover, with error estimate expression for the difference approximation to the classical solution, the linearity condition is unnecessary.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112