检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:成伟明[1] 唐振民[1] 赵春霞[1] 陈得宝[1]
机构地区:[1]南京理工大学计算机系人工智能实验室,南京210094
出 处:《系统仿真学报》2008年第3期608-611,共4页Journal of System Simulation
摘 要:提出一种神经网络和粒子群算法相结合的移动机器人路径规划方法。采用小波网络和RBF网络相结合的四层神经网络结构,克服了传统神经网络方法进行路径规划时对每个障碍均设计一些特定的隐节点,当障碍较多且环境动态时,网络结构庞大且神经元的阈值随时间的变化而需要不断改变的缺点。利用粒子群对神经网络的参数进行训练,在规定的代数内对网络参数优化,使得机器人在移动过程中能够快速响应环境的变化。通过对移动机器人在动、静态不同环境下的仿真实验,证明了方法的有效性。A new method of neural network and particle swarm algorithm based mobile robot path planning was proposed, With combination of the advantages of wavelet network and RBF network, a four layers neural network was designed. In conventional method, many hidden cells should design for every obstacle according to information of blocks, and the scale of network was very large with many obstacles. So PSO was used to train the parameters of neural network with its character of quick optimization to make the robot respond quickly to the dynamic environment. At last, the effectiveness of the method was proved by simulation experiments of mobile robotic in dynamic and static environments.
分 类 号:TP24[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30