基于神经网络和PSO的机器人路径规划研究  被引量:10

Path Planning of Robot Based on Neural Network and PSO

在线阅读下载全文

作  者:成伟明[1] 唐振民[1] 赵春霞[1] 陈得宝[1] 

机构地区:[1]南京理工大学计算机系人工智能实验室,南京210094

出  处:《系统仿真学报》2008年第3期608-611,共4页Journal of System Simulation

摘  要:提出一种神经网络和粒子群算法相结合的移动机器人路径规划方法。采用小波网络和RBF网络相结合的四层神经网络结构,克服了传统神经网络方法进行路径规划时对每个障碍均设计一些特定的隐节点,当障碍较多且环境动态时,网络结构庞大且神经元的阈值随时间的变化而需要不断改变的缺点。利用粒子群对神经网络的参数进行训练,在规定的代数内对网络参数优化,使得机器人在移动过程中能够快速响应环境的变化。通过对移动机器人在动、静态不同环境下的仿真实验,证明了方法的有效性。A new method of neural network and particle swarm algorithm based mobile robot path planning was proposed, With combination of the advantages of wavelet network and RBF network, a four layers neural network was designed. In conventional method, many hidden cells should design for every obstacle according to information of blocks, and the scale of network was very large with many obstacles. So PSO was used to train the parameters of neural network with its character of quick optimization to make the robot respond quickly to the dynamic environment. At last, the effectiveness of the method was proved by simulation experiments of mobile robotic in dynamic and static environments.

关 键 词:WRBF网络 机器人 路径规划 粒子群算法 

分 类 号:TP24[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象