奇异半线性发展方程的局部Cauchy问题  被引量:6

The Local Cauchy Problem of Singular Semilinear Evalution Equations in Banach Spaces

在线阅读下载全文

作  者:蹇素雯[1] 

机构地区:[1]云南师范大学数学系

出  处:《数学学报(中文版)》1997年第5期793-800,共8页Acta Mathematica Sinica:Chinese Series

摘  要:本文在Banach空间E中讨论如下问题dudt+1tσAu=J(u),0<tT,limt→0+u(t)=0,其中u:(0,T]E,A是与t无关的线性算子.(-A)是E上C0半群{T(t)}t0的无穷小生成元,常数σ1,J是一个非线性映射EJ→E.它满足局部Lipschitz条件.我们证明了当其Lipschitz常数l(r)满足一定条件时.问题(S)有局部解,且在某函类中解唯一.设J(u)=|u|γ-1u+f(x)(γ>1),E=Lp,EJ=Lpγ时得到了与Weisler[2]在非奇异情形类似的结果.In this paper, we study the following cauchy problem  dudt + 1t σ Au =J(u), 0<tT, lim t→0 +u(t)=0,in the Banach space E, where u(0,T] E, A is a linear operator with independent of t. σ1, (-A) is infinitesimal generator of continuous semi group {T(t)} t0 on E, and J is a nonlinear function from a subset E J of E into E. We assume that J:E J→E is locally Lipschitz. As the Lipscitz constant l(r) of J satisfying some conditions. We prove the locally existence and uniqueness of the problem (S). In addition, if A=-n i=1  2x 2 i, J(u) =|u| γ-1 u+ f(x)(γ>1), E=L p, E J=L pγ , we have the similar results with the results of Fed B. Weissler in .

关 键 词:半线性 发展方程 C0半群 初值问题 巴拿赫空间 

分 类 号:O175.26[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象