关于丢番图方程x^3±1=py^2  被引量:9

On the diuphantine equation x^3±1=py^2

在线阅读下载全文

作  者:牟善志[1] 戴习民[2] 

机构地区:[1]江苏技术师范学院基础部,江苏常州213001 [2]合肥工业大学理学院,安徽合肥230009

出  处:《安徽大学学报(自然科学版)》2008年第1期18-20,共3页Journal of Anhui University(Natural Science Edition)

摘  要:应用因子分解法、简单同余法以及前人的已知结果证明了:(1)设p是1个奇素数,则丢番图方程组x+1=3py21,x2-x+1=3y22,(y1,y2)=1,y1>0,y2>0,无正整数解x,p,y1,y2;(2)丢番图方程x3+1=py2(其中p≡-1(mod 3)为素数)仅有整数解(x,y)=(-1,0);(3)丢番图方程x3-1=py2(其中p≡-1(m od 3)为素数)仅有整数解(x,y)=(1,0).In the paper, we have proved the following (1) the Diuphantine equations x+1=3py^2;x^2-x+1=3y2^2;,(y1,y2)=1,y1〉0,y2〉0,where p was an odd prime number, has no positive integer solution x,p,y1,y2; (2) the Diuphantine equation x+1=3py^2, integer solution (x,y) = (- 1,0). ( 3 ) the Diuphantine equation x3 - 1 integer solution ( x , y ) = (1,0). 2 py , where p≡- 1 ( rood 3 ) was an odd prime number, has only integer solution (x,y) = (-1,0).( 3 ) the Diuphantine equation X^3-1=py^2,, where p = - 1 ( mod 3 ) was an odd prime number, has only integer solution ( x , y ) = (1,0).

关 键 词:丢番图方程 同余 整数解 

分 类 号:O156.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象