检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁震[1] 胡钟山[1] 杨静宇[1] 唐振民[1] 邬永革[1]
出 处:《模式识别与人工智能》1997年第2期133-139,共7页Pattern Recognition and Artificial Intelligence
摘 要:模糊C均值(FCM)算法用于灰度图像分割是一种非监督模糊聚类后再标定的过程.然而,FCM算法用于图像数据聚类时的最大缺陷是运算的开销太大.这就限制了这种方法在图像分割中的应用.本文根据FCM算法和灰度图像的特点,提出了一种适用于灰度图像分割的快速模糊C-均值(QFCM)算法.该方法降低了运算开销,使得分割耗时明显减少.本文从数学和实验上证明了这种算法的有效性和可行性.It is a procedure of the label following a unsupervised fuzzy clustering that fuzzy c-means (FCM) algorithm is applied for intensity image segmentation. However the fatal defciency of FCM algorithm, for image data clustering, is the operational cost very high, which limit its application in image segmentation. In the paper, a quick fuzzy c-means (QFCM) algorithm, for intensity image segmentation, is proposed on the basis of the characters of FCM algorithm and intensity images, with which the operational cost is decreased and the time-consuming of segmentation is obviously reduced. The effectiveness and the feasibility of the algorithm is proved on mathematics and the experiment.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3