机械手轨迹规划的神经网络逆模控制  被引量:6

Neural Network Inverse Model Control for Robot Arm Trajectory Planning

在线阅读下载全文

作  者:于乃功[1] 李明[1] 李建更[1] 

机构地区:[1]北京工业大学人工智能与机器人研究所,北京100022

出  处:《控制工程》2008年第3期225-227,241,共4页Control Engineering of China

基  金:国家自然科学基金资助项目(60375017);北京市属市管高等学校人才强教计划基金资助项目;高等学校博士学科点专项科研基金资助项目(20050005002)

摘  要:针对二自由度机械手动力学模型的非线性和参数的不确定性,提出了一种神经网络与逆模控制相结合的控制策略。针对传统BP算法在神经网络训练后期收敛速度慢且容易陷入局部极小的缺点,提出一种快速启发式学习算法。采用所提出的快速启发式网络学习算法训练多层前馈神经网络,建立机械手的逆动力学模型,实现对机械手的非线性控制。仿真结果表明了所提出控制策略的有效性和快速启发式网络学习算法的快速收敛性。To the non-linear characteristic and parameter uncertainty in 2-DOF robot arm control, a strategy that combines neural network and inverse model control is proposed. Because the traditional BP algorithm has some disadvantages of slow convergence and getting easily into local minima at the last time of training, a fast speed and heuristic algorithm is introduced to train a multiple-feed-forward neural network, and then the inverse model of robot ann is established. The simulation result shows the validity of control strategy and the fast speed convergence of the proposed algorithm.

关 键 词:逆模控制 轨迹规划 机械手 神经网络 

分 类 号:TP27[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象