曲边区域上定常Stokes方程的类Wilson元逼近  被引量:5

The Quasi-Wilson Element Method for the Stationary Stokes Equations in Domain with Curved Boundaries

在线阅读下载全文

作  者:石东洋[1] 周家全[1] 陈绍春[1] 

机构地区:[1]郑州大学数学系,郑州450052

出  处:《工程数学学报》2008年第1期53-61,共9页Chinese Journal of Engineering Mathematics

基  金:国家自然科学基金(10471133,10671184)

摘  要:本文讨论类Wilson元对曲边区域上定常Stokes方程的有限元逼近,在不需要试探函数u满足divu=0的条件下,克服了由区域变动、边界条件转换、曲边边界逼近以及类Wilson元非协调性等带来的困难,得到了H1-模的最优误差估计。所得结果在弥补以往文献不足的同时,进一步拓宽了类Wilson元的应用范围。The quasi-Wilson nonconforming arbitrary quadrilateral element approximation to the stationary Stokes equations in the domain with curved boundaries is considered for the case of the trial function u not satisfying the condition divu=0. The difficulties arising from the domain changing, the boundary datum transferring, the curved boundaries approximating and the nonconformity of quasiWilson element are overcome, the optimal error estimate in H^1-norm is derived. Thus the deficiencies of existing studies are remedied, and the application of quasi-Wilson element is extended.

关 键 词:曲边区域 类WILSON元 定常STOKES方程 最优误差估计 

分 类 号:O242.21[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象