检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]郑州大学数学系,郑州450052
出 处:《工程数学学报》2008年第1期53-61,共9页Chinese Journal of Engineering Mathematics
基 金:国家自然科学基金(10471133,10671184)
摘 要:本文讨论类Wilson元对曲边区域上定常Stokes方程的有限元逼近,在不需要试探函数u满足divu=0的条件下,克服了由区域变动、边界条件转换、曲边边界逼近以及类Wilson元非协调性等带来的困难,得到了H1-模的最优误差估计。所得结果在弥补以往文献不足的同时,进一步拓宽了类Wilson元的应用范围。The quasi-Wilson nonconforming arbitrary quadrilateral element approximation to the stationary Stokes equations in the domain with curved boundaries is considered for the case of the trial function u not satisfying the condition divu=0. The difficulties arising from the domain changing, the boundary datum transferring, the curved boundaries approximating and the nonconformity of quasiWilson element are overcome, the optimal error estimate in H^1-norm is derived. Thus the deficiencies of existing studies are remedied, and the application of quasi-Wilson element is extended.
关 键 词:曲边区域 类WILSON元 定常STOKES方程 最优误差估计
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229