齐次线性微分方程复振荡的一个问题  

在线阅读下载全文

作  者:高仕安[1] 杨荣华[2] 

机构地区:[1]华南师范大学数学系,广州510631 [2]广东教育学院数学系,广州510303

出  处:《科学通报》1997年第24期2603-2605,共3页Chinese Science Bulletin

基  金:国家自然科学基金(批准号:19471030)资助项目;广东省高教厅下达的重点项目

摘  要:先说明本文将使用的记号。以б(f)记亚纯函数f(z)的增长级,λ(f)和(?)(f)分别记f(z)的零点(计及重数)和不同零点(不计及重数)收敛指数。其他函数论记号是标准的,例如见文献[1]和[2]。 1983年,Bank等用Hayman不等式证明:设k=2,A(z)是超越整函数,满足(?)(A)<б(A)。则方程 的任一解f(?)0均有λ(f)≥б(A)。同年,Bank等人又证明:设k≥3,A(z)同前,但满足λ(A)<б(A)。则方程(1)的任一解f(?)0均有λ(f)≥б(A)。对于k≥3,如果A(z)同前,但仅满足(?)(A)<б(A),是否仍有同样结论?这一直是个未决问题。本文采用组合优势条件在更广的条件下作为一个结果的推论解决这一问题。

关 键 词:亚纯函数 微分方程 复振荡 线性 微分多项式 

分 类 号:O175.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象