检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南师范大学数学系,广州510631 [2]广东教育学院数学系,广州510303
出 处:《科学通报》1997年第24期2603-2605,共3页Chinese Science Bulletin
基 金:国家自然科学基金(批准号:19471030)资助项目;广东省高教厅下达的重点项目
摘 要:先说明本文将使用的记号。以б(f)记亚纯函数f(z)的增长级,λ(f)和(?)(f)分别记f(z)的零点(计及重数)和不同零点(不计及重数)收敛指数。其他函数论记号是标准的,例如见文献[1]和[2]。 1983年,Bank等用Hayman不等式证明:设k=2,A(z)是超越整函数,满足(?)(A)<б(A)。则方程 的任一解f(?)0均有λ(f)≥б(A)。同年,Bank等人又证明:设k≥3,A(z)同前,但满足λ(A)<б(A)。则方程(1)的任一解f(?)0均有λ(f)≥б(A)。对于k≥3,如果A(z)同前,但仅满足(?)(A)<б(A),是否仍有同样结论?这一直是个未决问题。本文采用组合优势条件在更广的条件下作为一个结果的推论解决这一问题。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.87.235