检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]烟台师范学院数学系,烟台264025 [2]南开大学数学系,天津300071
出 处:《科学通报》1997年第19期2047-2050,共4页Chinese Science Bulletin
基 金:国家自然科学基金(批准号:19601032;19671045);山东省自然科学基金资助项目
摘 要:一个Lie代数称为完备Lie代数如果它的中心为零且所有的导子都是内导子。完备Lie代数的定义是Jacobson在 1962年给出的,近些年完备 Lie代数理论有了较大发展(部分研究可参见文献[2~5]),Jiang和Meng文给出了复数域C上所有幂零根基可换的完备Lie代数的结构和具体实现,文献[5]给出了复数域C上有限维Heisenberg代数的导子代数和全形,证明了此导子代数和全形的导子代数均为单完备Lie代数.本文讨论了复数域C上幂零根基为Heisenberg代数的有限维完备Lie代数的性质,给出了这一类完备Lie代数的同构定理,证明了一个以 Heisenberg代数为幂零根基的完备Lie代数可以分解为一个以 Heisenberg代数或一维可换Lie代数为幂零根基的可解完备Lie代数和另一个以Heisenberg代数或一维可换Lie代数为幂零根基的完备Lie代数的和,给出了所有这两类完备Lie代数的结构和具体实现.因而C上所有以Heisenberg代数为幂零根基的有限维完备Lie代数的结构和具体构造全部被研究清楚. 本文中所讨论的Lie代数均为复数城C上的有限维Lie代数.
关 键 词:HEISENBERG代数 幂零根基 李代数 完备李代数
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49