检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周焕林[1] 牛忠荣[1] 程长征[1] 王秀喜[2]
机构地区:[1]合肥工业大学工程力学系,安徽合肥230009 [2]中国科学技术大学中科院材料力学行为和设计重点实验室,安徽合肥230026
出 处:《计算力学学报》2008年第3期333-338,共6页Chinese Journal of Computational Mechanics
基 金:教育部博士点基金(20050359009);安徽省自然科学基金(050440503)资助项目
摘 要:导出了一种解析积分算法,精确计算了二维各向异性位势问题边界元法中近边界点的几乎奇异积分。对线性单元,几乎奇异积分可用解析公式直接计算。对二次单元,可将其细分为几个线性单元,采用该解析公式间接近似计算。当内点离积分单元较远时,仍然保持常规高斯数值积分模式;而当内点离其较近时,高斯积分结果失效,采用该解析积分取代高斯数值积分。数值算例证明了该算法的有效性和精确性。二次元比线性元计算结果更精确。A new analytical integral algorithm is proposed and applied to the evaluation of the nearly singular integrals in the Boundary Element Method for 2D anisotropic potential problems. The nearly singular integrals over the linear elements are accurately computed by new analytical formulas. For quadratic element, after it is subdivided into several linear elements, the nearly singular integrals can be approximately computed by the analytical formulas. When an interior point is far away from an element, the conventional Gaussian numerical quadrature scheme is kept. Otherwise if the point is very close to the element, the Gaussian numerical quadrature is replaced by the new analytical formulas due to the invalidation of the Gaussian quadrature. The numerical results of two examples demonstrate the effectiveness and accuracy of the algorithm. The results of quadratic elements are more accurate than those of linear elements.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49