时滞BAM神经网络的数值逼近  

Numerical approximation of an n-dimensional BAM neural network model with multi-delays

在线阅读下载全文

作  者:张明明[1] 张春蕊[1] 

机构地区:[1]东北林业大学数学系,哈尔滨150040

出  处:《哈尔滨工业大学学报》2008年第5期832-835,共4页Journal of Harbin Institute of Technology

基  金:中国博士后科学基金资助项目(2004036108)

摘  要:研究了一类重要的多时滞BAM神经网络模型的Hopf分支的数值逼近问题.将时滞差分方程表示为映射,然后利用离散动力系统的分支理论,给出了差分方程的Hopf分支存在的条件,得到了连续模型的Hopf分支与其数值逼近的关系,证明了当步长充分小时,数值Hopf分支值逼近于原方程的Hopf分支值.The numerical approximation of a class neural network models with two delays was studied. First, the delay deference equation was expressed as mapping. By employing the theories of bifurcation for discrete dynamical systems, the conditions to guarantee the existence of Hopf bifurcations for numerical approximation were obtained. The relation of Hopf bifurcations between the continuous and the discrete systems were obtained. It is proved that the numerical Hopf bifurcation values are approximate to those of the original equation.

关 键 词:BAM神经网络 时滞 HOPF分支 数值逼近 EULER方法 

分 类 号:O214.8[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象