检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈云[1] 赵晓东[2] 薛安克[2] 鲁仁全[2]
机构地区:[1]杭州电子科技大学运筹与控制研究所 [2]杭州电子科技大学信息与控制研究所,浙江杭州310018
出 处:《浙江大学学报(工学版)》2008年第7期1189-1193,共5页Journal of Zhejiang University:Engineering Science
基 金:国家自然科学基金资助项目(60434020,60604003);浙江省自然科学基金资助项目(Y106373);浙江省教育厅科研资助项目(Y200701897)
摘 要:为了同时考虑系统参数不确定性和控制器不确定性对系统性能的影响,提出了不确定时滞系统基于观测器的鲁棒非脆弱控制器设计方法.基于Lyapunov-Krasovskii理论,得到系统鲁棒非脆弱控制器存在的充分条件.当控制矩阵为列满秩时,采用矩阵奇异值分解(SVD)的方法,将控制器的存在条件转化为一个严格线性矩阵不等式(LMI)的可解性问题,易于用Matlab/LMI工具箱进行求解.数值算例表明,所设计的控制器对系统参数的不确定性、控制器和观测器的不确定性都具有较好的鲁棒性.The design method of a robust non-fragile observer-based controller for uncertain time-delay systerns was presented to consider the effects on system performances arising from the uncertainties of both parameters and controllers. A sufficient existence condition of the controller was obtained based on Lyapunov-Krasovskii theory. If the control matrix is full column rank, the existence condition is formulated in terms of a linear matrix inequality (LMI) by singular value decomposition (SVD) technique, which can be solved efficiently by employing Matlab/LMI Toolbox. Numerical examples show that the designed controller is robust to the system parametric uncertainties and the controller's and observer's uncertainties.
关 键 词:鲁棒非脆弱控制 观测器 不确定时滞系统 奇异值分解 线性矩阵不等式
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15