冲击振动落砂机在1∶4强共振点附近的动力学特性  

DYNAMICAL BEHAVIOR OF THE INERTIAL SHAKER NEAR 1∶4 STRONG RESONANCE POINT

在线阅读下载全文

作  者:张艳龙[1] 徐慧东[2] 

机构地区:[1]兰州交通大学机电工程学院,甘肃兰州730070 [2]西南交通大学应用力学与工程系,四川成都610031

出  处:《工程力学》2008年第8期194-199,211,共7页Engineering Mechanics

基  金:国家自然科学基金项目(10572055;50475109);甘肃省自然科学基金项目(3ZS062-B25-007;3ZS042-B25-044)

摘  要:应用映射的中心流形和范式方法,研究了冲击振动落砂机高维映射在其Jacobian矩阵的一对复共轭特征值±i穿越复平面单位圆周情况下的分岔:应用中心流形理论将Poincaré映射化为二维映射,并得到了1∶4强共振下的范式映射,从而讨论了映射在1∶4强共振点附近的分岔图重组过程,定性分析了冲击振动落砂机在1∶4强共振点及其附近的动力学特性。数值仿真结果也表明:冲击振动落砂机在1∶4强共振点附近存在周期运动的Neimark-Sacker分岔和一些复杂分岔,如周期4轨道的Ton型和Tout型相切分岔。The local bifurcation of an inertial shaker, concerning one complex conjugate pair of eigenvalues ±i of the Jacobian matrix of the mapping escaping the unit circle simultaneously, is investigated by using the center manifold theorem technique and normal form method of the mapping. A center manifold theorem technique is applied to reduce the Poincare mapping to a two-dimensional one, and the normal form mapping associated with 1 : 4 strong resonance is obtained. Thusly, the changing process of the bifurcation diagrams of the mapping near 1 : 4 strong resonance point is discussed. The local dynamical behavior of an inertial shaker near 1 : 4 strong resonance point is investigated by using qualitative analysis. The results from numerical simulation also illustrate that Neimark-Sacker bifurcation of periodic-impact motions and some complicated bifurcations, e.g., Ton and Tout types of tangent bifurcations of period-4 orbits, are found to exist in the inertial shaker near 1 :4 strong resonance point.

关 键 词:冲击振动 强共振 中心流形 范式 分岔 混沌 

分 类 号:O322[理学—一般力学与力学基础] TH113.1[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象