检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学电气学院,浙江杭州310027 [2]福州大学电气工程与自动化学院,福建福州350002
出 处:《控制理论与应用》2008年第5期883-886,共4页Control Theory & Applications
基 金:国防科技预研基金资助项目(J16.6.3).
摘 要:采用单类、单一传感器很难获得移动机器人的准确定位.为此,运用异质传感器信息融合来提高定位精度.首先,建立机器人运动方程和CCD摄像机观测模型.然后,利用扩展卡尔曼滤波器进行状态估计,选择Q,R矩阵抑制系统的模型噪声和量测噪声,并实现移动机器人的自定位.接着,建立超声波传感器的观测模型,获得机器人的自定位信息.最后,运用BP神经网络,将两种自定位信息进行融合,实现两类传感器的优缺点互补.仿真实验表明,运用异质传感器信息融合能明显地提高移动机器人的自定位精度.It is difficult to realize the exact self-localization of mobile robot by using a single type sensor. The heterogeneous sensor information fusion is utilized to improve the self-localization precision. First, the motion model of the mobile robot and observed model of CCD vidicon are established. The optimal state estimation is derived, model disturbances and measurement noises are restrained by the Q, R matrices, and the self-localization is realized by the extended Kalman filter. Then, the observed model of the ultrasonic sensor is established, and the self-localization information is obtained. Finally, the data from CCD vidicon and the ultrasonic sensor are fused by BP neural network. The cooperation of the two types of sensors is realized. The simulation results show that the self-localization precision of the mobile robot is obviously improved by the heterogeneous sensor information fusion.
关 键 词:移动机器人 扩展卡尔曼滤波 神经网络 信息融合 白定位
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46