基于最小二乘支持向量机的多变量逆系统控制方法及应用  被引量:29

Decoupling Compound Control Method Based on Least Squares Support Vector Machines Multivariable Inverse System and Its Application

在线阅读下载全文

作  者:程启明[1] 杜许峰[1] 郭瑞青[1] 郑勇[2] 

机构地区:[1]上海电力学院电力与自动化学院,上海市杨浦区200090 [2]上海大学机电工程与自动化学院,上海市闸北区200072

出  处:《中国电机工程学报》2008年第35期96-101,共6页Proceedings of the CSEE

基  金:上海市教委重点科研项目(06ZZ69);上海市教委重点学科建设项目(J51301);上海市重点学科建设项目(P1301,P1303)

摘  要:为提高多变量、非线性和强耦合系统的动态特性和解耦能力,解决逆模型辨识问题,讨论了基于最小二乘支持向量机(least squares support vector machines,LS-SVM)的多变量逆系统解耦控制方法。通过分析LS-SVM的函数拟合特性,离线建立被控对象的非线性逆模型,将得到的逆模型直接串接在原对象之前,原系统被解耦成多个独立的单变量伪线性子系统。为克服直接逆模型的建模误差,提高系统鲁棒稳定性,提出了复合控制方法,其中直接逆模型作为前馈控制器,而用PID控制器作为反馈控制器。文中还分析了球磨机控制系统的特点,并进行了仿真控制研究,仿真结果表明该复合控制方法不依赖于系统的精确数学模型,且解耦能力强、鲁棒稳定性好、跟踪精度高。To improve the dynamical property and decoupling capability for multivariable, nonlinear and strong coupling system, and to solve the problem of inverse model identification, the decoupling control method of multivariable inverse system based on least squares support vector machines(LS-SVM) was discussed. The fitting characteristic of LS-SVM function was analyzed, and the nonlinear inverse model of the controlled object was offline built with LS-SVM. The LS-SVM inverse model was cascaded before the original object, thus, the original system was decoupled into several independent single variable pseudo-linear subsystems. To overcome the modeling error of direct inverse control and improve the robust stability, the compound control system was also proposed, in which the inverse model was used as feed-forward controller, and PID controller was used to realize feedback control. The characteristics of ball mill control system were analyzed, and the ball mill control system was simulated and studied, the simulative results show that the combined method does not depend on the accurate mathematical model and has strong decoupled ability, good robust stability, high tracking accuracy.

关 键 词:非线性多变量系统 逆系统 最小二乘支持向量机 复合控制 球磨机 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象