检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚庆六[1]
机构地区:[1]南京财经大学应用数学系,江苏南京210003
出 处:《武汉大学学报(理学版)》2009年第2期129-133,共5页Journal of Wuhan University:Natural Science Edition
基 金:国家自然科学基金资助项目(10571085)
摘 要:考察了一类奇异四阶两点边值问题的正解,其中允许非线性项奇异.主要工具是全连续算子的逼近定理和锥拉伸与锥压缩型的Guo-Krasnosel’skii不动点定理.在力学上这一类问题描述了两端刚性固定的弹性梁的形变.为了描述非线性项的增长,引入了非线性项的主要部分和高度函数.结果表明只要在某些有界集合上的主要部分的高度和高度函数的积分是适当的,该类问题可以具有n个正解,其中n是一个任意的正整数.We consider the positive solutions to a class of nonlinear fourth-order two-point boundary value problems, where the nonlinear term is allowed to be singular. Main foundation is the approximation theorem of completely continuous operators and the Guo-Krasnosel'skii fixed point theorem of cone expansion-compression type. In mechanics, this class of problems describe the deformation of an elastic beam rigidly fixed at both ends. In order to describe the growth of nonlinear term we introduce the principal and singular parts of nonlinear term. The results show that this class of problems can have n positive solutions provided the heights of principal part and the integrations of height function on some bounded sets are appropriate, where n is an arbitrary positive integer.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249