检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘波平[1,2] 荣菡[1] 罗香[2] 邓泽元[1] 曹树稳[1]
机构地区:[1]南昌大学食品科学与技术国家重点实验室,南昌330047 [2]江西省分析测试中心,南昌330029
出 处:《分析试验室》2009年第6期66-69,共4页Chinese Journal of Analysis Laboratory
基 金:教育部南昌大学食品科学重点实验室开放基金(NCU200404);江西省星火计划项目(2005年)资助
摘 要:基于近红外光谱技术,将偏最小二乘法(Partial Least Squares,PLS)和单隐层的反向传播网络(Back-Propagation Network,BP)联用并测定了鲜乳中4种主成分含量。用PLS法将原始数据压缩为主成分,取前3个主成分的14个数据输入网络,以Kolmogorov定理为依据,经过实验确定中间层的神经元个数为29,初始训练迭代次数为1000,建立了脂肪、蛋白质、乳糖、牛乳总固体4种主成分含量的预测校正模型。PLS-BP模型对样品4个组分含量的预测决定系数(R2)分别为:0.961、0.974、0.951、0.997;本研究为近红外光谱技术在鲜乳多组分快速检测提供了新思路。Partial least squares (PLS) and back-propagation network (BP) prediction model for the determination of fat, protein, lactose, total solids in raw milk had been established with good veracity based on near infrared spectroscopic technique. 14 peak value data from 3 principal components straight ahead compressed from original data by PLS were taken as inputs of while 4 predictive targets as outputs. According to kolmogorov theorem and experiment, 29 nerve cells were chosen as hidden nodes for its prediction with the lowest error. Its training iteration times were supposed as 1000. Predictive correlation coefficients by the model are 0.961, 0.974, 0.951, 0.997. The result shows a new idea for multi-component quantitative analysis of raw milk.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15