检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘纯[1] 范高锋[1] 王伟胜[1] 戴慧珠[1]
机构地区:[1]中国电力科学研究院,北京市海淀区100192
出 处:《电网技术》2009年第13期74-79,共6页Power System Technology
摘 要:风电场输出功率预测对于接入大量风电的电力系统运行具有重要意义。作者利用BP神经网络、径向基函数神经网络和支持向量机进行风电功率预测,提出了风电场输出功率的组合预测模型。采用3种方法确定权重,即等权重平均法、协方差优选组合预测法和时变权系数组合预测法。研究结果表明,不同方法的预测精度不同,整体预测精度高的方法在个别预测点也可能误差较大,组合预测模型能有效减少各预测点较大误差的出现,有利于提高预测精度。It is of significance to forecast output power of wind farm for the operation of power grid to which large amount of wind power is connected. By use of BP neural network, radial basis function neural network and support vector machine, a combination forecasting model for output power of wind farm is built. The weights are calculated by three methods, i.e., equal weight average method, covariance optimization combination forecast and time-varying weight combination forecast. Research results show that the forecast accuracy from different methods is diverse one another; even though a method can offer high forecast accuracy in total, at individual point the forecast error of this method may be larger, however combination forecasting model can avoid larger forecast error in each point, so it is favorable to improve forecast accuracy.
关 键 词:风电场 功率预测 BP神经网络 径向基函数神经网络 支持向量机
分 类 号:TM614[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145