基于MCMC无味粒子滤波的目标跟踪算法  被引量:14

Target tracking algorithm based on MCMC unscented particle filter

在线阅读下载全文

作  者:张苗辉[1,2] 刘先省[1,2] 

机构地区:[1]河南大学先进控制与智能信息处理研究所,河南开封475001 [2]河南大学计算机与信息工程学院,河南开封475001

出  处:《系统工程与电子技术》2009年第8期1810-1813,共4页Systems Engineering and Electronics

基  金:国家自然科学基金(60272024);河南省高校杰出科研人才创新工程项目(2003KYCX003);河南省高校创新人才培养工程资助课题

摘  要:针对传统粒子滤波目标跟踪算法存在粒子退化的问题,提出了基于马尔可夫链-蒙特卡罗(Markovchain Monte Carlo,MCMC)无味粒子滤波的目标跟踪算法。该算法采用无味卡尔曼滤波(unscented Kalmanfilter,UKF)生成粒子滤波的提议分布,来代替传统粒子滤波算法采用状态转移先验概率作为粒子滤波的提议分布,以改善滤波效果,然后在无味粒子滤波的基础上融合了典型的MCMC抽样算法(Metropolis Hastings,MH),从而可以减少传统粒子滤波未考虑当前量测对状态的估计作用所带来的影响。融合后的算法将当前量测信息融入到滤波过程中,并使采样粒子更加多样化。实验结果表明,该算法较传统方法在跟踪精度方面有显著的提高。As the problem of particles degradation exists in the traditional particle filter algorithm, a target tracking algorithm based on the Markov chain Monte Carlo (MCMC) unscented particle filter is proposed. Instead of taking a transition prior probability as proposal distribution, the unscented Kalman filter (UKF) is used to generate the proposal distribution so as to improve the filtering effect. Then the paper syncretizes the standard MCMC sampling method, Metropolis Hastings (MH), and the unscented particle filter, which can reduce the effect that the traditional particle filter doesn't consider the current measurement. The syncretized algorithm takes the current measurement into the filtering process and makes the particles more diversification. Experiment results show that the algorithm has more significant advantages in tracking accuracy than other tradi- tional algorithms.

关 键 词:目标跟踪 粒子滤波 马尔可夫链-蒙特卡罗 无味卡尔曼滤波 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象