检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《东北大学学报(自然科学版)》2009年第12期1792-1795,共4页Journal of Northeastern University(Natural Science)
基 金:国家自然科学基金资助项目(70572088)
摘 要:分析了B2C电子商务网站中应用最广的协同过滤推荐方法在数据源方面存在的局限性,提出了一种基于顾客交易数据的协同过滤推荐方法.该方法的基本原理是:基于顾客的购买历史记录,获得顾客对于各种商品的最近购买时间R(Recency),购买频率F(Frequency)和购买金额M(Monetary)等指标,利用这三个指标确定顾客对已购商品的偏好程度;进一步建立体现顾客商品偏好度的IRFM矩阵,并以该矩阵为数据源为顾客提供个性化的商品推荐.该方法能为老顾客提供质量更高的推荐,进一步扩展了协同过滤方法的应用范围.Discussing the limitation of data source in conventional collaborative filtering recommendation (CFR), which is widely used in B2C E-commerce websites, an improved CFR based on customers' transaction data is put forward. The fundamentals of the improved CFR are described as follows. The three customers' behavioral indices including the recency (R), frequency (F), and monetary (M), are acquired from customers' historical records of shopping for various goods to evaluate their purchasing preferences, and then an integrated RFM (IRFM) matrix is formulated as the data source of CFR to recommend personalized goods for target customers, thus providing a high-quality recommendation to familiar customers so as to expand the application range of CFR.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.204.121