检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京师范大学课程与教学研究所
出 处:《数学教育学报》2009年第6期13-15,共3页Journal of Mathematics Education
基 金:全国教育科学“十一五”规划课题——回顾与反思:中国数学教育研究30年(DAA080080);江苏省教育科学“十一五”规划课题——本原性学科问题驱动课堂教学的理论建构与应用研究(D/2006/01/086)
摘 要:建构主义在数学教育中的发展自有其早期的理论来源,即问题解决、系统性的错误和错误观念、认知发展理论,这些理论传统共同孕育着新的数学教育观,即不仅仅是数学逻辑,还有一些内容也是需要解释、预测、并促进数学学习的,它们都认识到数学学习是困难的还是简单的不能仅仅从观察材料的复杂性角度来解释,还需要用其它因素来解释数学学习所采用的方法,解释失败或成功的水平.建构主义在数学教育中的主导地位是在围绕其第一和第二顺序模式,即“知识是认知主体主动建构的,而不是从环境中被动接受的”和“开始认知就是一个适应性过程,这个过程组织个体的经验世界,它不需要发现一个外在于认知者心灵之外的、独立的先验世界”的辩护和反辩护的过程当中被逐步建构起来的.Constructivism in mathematics education had its own theory source in it's early development, that was, problem solving, systematic errors and misconceptions, cognitive development theory, all of which co-bred with a new view of mathematics education, that was, besided mathematical logic, there was still some contents need to explain, predict and promote mathematic learning. All of them have realized that it was not enough to explain why mathematics learning was easy or difficult from the perspective of the complexity of observation materials. We had to use other factors to interpret learning methods and the levels of learning success or failure. The dominant position of constructivism in mathematics education was developed in the process of defense and counter-defense around the first and the second order model, that was, "knowledge was actively constructed by individuals rather than be passively accepted from the environment" and "the beginning recognition was a cognitive adaptation process which organize individuals" experience in the world, which did not need to find independent transcendental world that was outside individuals.
关 键 词:数学教育 建构主义 发展与反思 理论来源 主导地位
分 类 号:G421[文化科学—课程与教学论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.59.124