检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许文彬[1]
出 处:《厦门大学学报(自然科学版)》2010年第2期163-165,共3页Journal of Xiamen University:Natural Science
基 金:福建省自然科学基金(2006J0217);集美大学科研基金
摘 要:Kingenberg证明了任意紧致黎曼流形上都存在闭测地线,Yau提出是否能够证明紧致黎曼流形上有无穷多条闭测地线.由著名的Cheeger-Gromoll的核心结构的思想,任意的具非负曲率完备非紧的黎曼流形与它的核心是同伦等价的.因此可以考虑具非负曲率完备非紧的黎曼流形闭测地线存在性和分布性问题.本文证明了当核心的余维数是奇数且具非负曲率的完备非紧的黎曼流形上存在有无穷多条闭测地线;并由此讨论了紧致的非单连通黎曼流形上无穷多的闭测地线存在性问题.Kingenberg obtained that there is a closed geodesic in a compact Riemannian manifold, Yau quoted whether there are infinite closed geodesics in a compact Riemannian manifold. By the well-known Cheeger-Gromoll soul's idea, a noncompact complete Riemannian manifold M with nonnegative curvature is homotopic to its soul S, one can consider whether there are infinite closed geodesics in a noncompact Riemannian manifold. The paper proves that there are infinite closed geodesics in a complete noncompact Riemannian manifold with nonnegative curvature provided that codim S= 2k + 1,where S is the soul. Also,the paper discuss the existence of the infinite closed geodesics of a compact no-simply connected Riemannian manifold.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7