具非负曲率完备非紧黎曼流形的闭测地线  

The Closed Geodesics in Complete Riemannian Manifolds with Nonnegative Curvature

在线阅读下载全文

作  者:许文彬[1] 

机构地区:[1]集美大学理学院,福建厦门361021

出  处:《厦门大学学报(自然科学版)》2010年第2期163-165,共3页Journal of Xiamen University:Natural Science

基  金:福建省自然科学基金(2006J0217);集美大学科研基金

摘  要:Kingenberg证明了任意紧致黎曼流形上都存在闭测地线,Yau提出是否能够证明紧致黎曼流形上有无穷多条闭测地线.由著名的Cheeger-Gromoll的核心结构的思想,任意的具非负曲率完备非紧的黎曼流形与它的核心是同伦等价的.因此可以考虑具非负曲率完备非紧的黎曼流形闭测地线存在性和分布性问题.本文证明了当核心的余维数是奇数且具非负曲率的完备非紧的黎曼流形上存在有无穷多条闭测地线;并由此讨论了紧致的非单连通黎曼流形上无穷多的闭测地线存在性问题.Kingenberg obtained that there is a closed geodesic in a compact Riemannian manifold, Yau quoted whether there are infinite closed geodesics in a compact Riemannian manifold. By the well-known Cheeger-Gromoll soul's idea, a noncompact complete Riemannian manifold M with nonnegative curvature is homotopic to its soul S, one can consider whether there are infinite closed geodesics in a noncompact Riemannian manifold. The paper proves that there are infinite closed geodesics in a complete noncompact Riemannian manifold with nonnegative curvature provided that codim S= 2k + 1,where S is the soul. Also,the paper discuss the existence of the infinite closed geodesics of a compact no-simply connected Riemannian manifold.

关 键 词:非负曲率 黎曼流形 闭测地线 核心 

分 类 号:O186.12[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象