检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科技大学数学系
出 处:《应用数学》1999年第1期72-75,共4页Mathematica Applicata
摘 要:本文通过具有良好性质的子流形的存在性,证明了一类流形的一个刚性定理,并得到形如Bonnet-Myers定理的推论.我们还指出,在主要定理中全测地子流形的条件一般不能减弱为极小子流形.In this paper,we prove a rigidity theorem for a complete Riemannian manifold by the existence of a nice totally geodesic submanifold.Then we state a corollary which has the form of the well known Bonnet Myers theorem.We also point out that in our main theorem,'totally geodesic' can not be taken place by 'minimal' in our way.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117