检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]嘉兴学院数学与信息工程学院,浙江嘉兴314001
出 处:《计算机应用与软件》2010年第8期279-281,294,共4页Computer Applications and Software
摘 要:针对在反对称矩阵反问题的最小二乘解求解计算中,难以从问题的原始形式出发,构造出高效的迭代算法的计算难题,提出一种基于PSO算法的反对称矩阵反问题的最小二乘解的计算算法。该算法采用以带约束条件的反问题矩阵范数作为粒子群优化算法的适应度函数,建立起最小二乘解的计算模型。算例仿真结果显示,该算法是一种高效实用的求解算法。In order to solve the computing poser that it is hard to construct an effective iterative algorithm proceeding from the aboriginality of a problem straightway in the process of calculating the least-squares solutions of inverse problems for anti-symmetric matrices, a novel algo- rithm of calculating the least-squares solutions of inverse problems for anti-symmetric matrices is presented in the paper based on particle swarm optimization. Matrix norm of inverse problems with constraints is adopted in the algorithm to be the fitness function for the particle swarm optimization,thus the model of computing least-squares solutions is set up. Through a numerical simulation computational experiment, the algorithm is demonstrated an effective and practical approach of the problem solution.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117