广义Burgers-Fisher方程的Haar小波有限差分法  被引量:3

Haar wavelet finite difference method for solving the generalized Burgers-Fisher equation

在线阅读下载全文

作  者:高博[1] 曲小钢[1] 

机构地区:[1]西安建筑科技大学理学院,陕西西安710055

出  处:《纺织高校基础科学学报》2010年第2期170-173,184,共5页Basic Sciences Journal of Textile Universities

摘  要:研究了基于Haar小波有限差分法求解广义Burgers-Fisher方程.给出Haar小波族的定义,建立积分运算矩阵,该矩阵把积分运算转化为矩阵运算.对方程时间方向的离散采用向前差商,空间方向的离散采用Haar小波.利用Haar矩阵的稀疏性,有效地提高了计算速度和精度.通过计算机模拟获得数值结果,并与Adomian分解法进行比较,结果显示本文所给出的方法对求解时间较小问题时优于Adomian分解法.A solution of the generalized Burgers-Fisher equation based on the Haar wavelet finite difference method is studied.The Haar wavelet family is given.The operational matrix of integration is established.The matrix is to convert the integral operations into the matrix operations.According to this method,the spatial operators are approximated by the Haar wavelet and the time derivation operators by the forward difference quotient.This method improves the computation speed and accuracy due to the sparsity of the Haar matrices.Numerical results,obtained by computer simulation,are compared with the Adomian decomposition method.The result shows that the method for solving problems of short time is better than Adomian decomposition method.

关 键 词:广义BURGERS-FISHER方程 HAAR小波 Haar方阵 积分运算矩阵 小波有限差分法 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象