检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]宁夏大学应用数学与力学研究所,银川750021 [2]中国航天科工集团第六研究院46所,呼和浩特010010
出 处:《工程数学学报》2010年第5期853-858,共6页Chinese Journal of Engineering Mathematics
基 金:国家自然科学基金(10502026);宁夏自然科学基金(NZ0937)~~
摘 要:本文基于二阶导数的四阶Pade型紧致差分逼近式,并结合原方程本身,得到了三维Helmholtz方程的一种四阶精度的隐式紧致差分格式,该格式在每个空间方向上只涉及到三个点处的未知量及其二阶导数值。边界处对于二阶导数的离散格式利用四阶显式偏心格式。然后,利用Richardson外推法、算子插值法及二阶导数在边界点处的六阶显式偏心格式,将本文构造的格式精度提高到六阶。最后,通过数值实验验证了本文方法的精确性和可靠性。Based on the Pade scheme of second-order partial derivatives and combined with the original differential equation,a fourth-order implicit compact difference scheme is proposed for solving the three-dimensional Helmholtz equation.Only three points and their second-order derivative values are needed on each spatial direction.The fourth-order explicit difference schemes are used to construct the same order discretization of boundary conditions.Then,the accuracy of the fourth-order implicit compact difference scheme is upgraded to sixth-order by using the Richardson extrapolation technique and operator interpolation scheme.The sixth-order explicit difference schemes of second-order partial derivatives on the boundaries are also used.Finally,numerical experiments are given to prove the efficiency and reliability of the present method.
关 键 词:HELMHOLTZ方程 高精度 隐式 紧致差分格式 RICHARDSON外推法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15