检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科技大学机电工程与自动化学院,湖南长沙410073
出 处:《智能系统学报》2010年第5期425-431,共7页CAAI Transactions on Intelligent Systems
基 金:国家自然科学基金资助项目(60475035)
摘 要:定位问题是移动机器人研究领域中最基本的问题,在Bayes的框架下研究了机器人与无线传感器网络(W SN)组成系统中的同时建图与定位问题(SLAM).针对该系统中只存在距离测量信息可用的情况提出了一种基于粒子滤波的SLAM算法.该方法将机器人状态和节点位置估计设置为一组全局估计粒子,通过对粒子及其权重的更新来计算整个系统的状态.算法将W SN节点的位置估计在机器人的路径上分解为相互独立的估计,从而将全局粒子的计算转化为使用一个机器人状态滤波器和对应于每个机器人粒子的节点位置滤波器进行计算.针对观测信息低维的特点,设计了处理低维观测信息的方法,使得观测信息可以在滤波阶段得到合理利用.并且详细介绍了提出的SLAM算法原理和计算过程,并通过仿真实验证明了算法的有效性和实用性.Localization is one of the most fundamental problems in mobile robots. A method for simultaneous localization and mapping (SLAM) in robot and WSN systems using range-only measurements was presented in a Bayes framework and a particle filtering method was designed for the problem. The estimations of the robot' s path and WSN node position were set to be clusters of particles which were called status particles. The status particles were used to estimate the whole state posterior by its position and weight. The algorithm assumed position of WSN nodes which were conditioned independently along the robot' s path, so the system posterior could be computed separately. A particle filter called a robot filter was used to compute the robot' s posterior and a separate copy of each node filter corresponding to each robot particle. Due to the low dimension of range measurement, methods were made for utilizing this information. The experiment proved the efficiency and practicality of the algorithm.
关 键 词:无线传感器网络 移动机器人 同时定位与建图 粒子滤波
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104