检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闫循良[1] 汤一华[1] 徐敏[1] 陈士橹[1]
出 处:《固体火箭技术》2010年第6期611-615,620,共6页Journal of Solid Rocket Technology
摘 要:给出了空间交会冲量机动任务规划及基于该任务规划的有限推力燃料最优交会算法。首先,以双冲量空间交会作为问题的初步模型,采用Battin-Vaughan算法对追踪器初始位置和飞行时间的组合进行遍历计算,通过分析特征速度等值线图,进行空间交会的任务规划,为有限推力燃料最优交会提供重要的初值条件。基于任务规划分析,建立了有限推力燃料最优交会的最优控制模型,根据庞特里亚金极值原理将最优控制问题转化为两点边值问题,采用共轭梯度算法进行数值求解。在变轨时间固定、连续变推力的情况下,以总冲最小、满足终端位置和速度约束为指标,对推力大小和方向进行优化。通过数值仿真,得到了一些重要的结论,为工程应用提供了一定参考价值。The space rendezvous impulse mission planning and its fuel-optimal finite-thrust space rendezvous algorithm are presented.Two-impulse rendezvous between two unfixed points on non coplanar elliptical orbits,which is regarded as the primary model,is solved by converting it to Lambert problem.Based on Battin-Vaughan algorithm,ergodic calculation is performed for a range of initial position and transfer time,and the characteristic velocity is obtained.Consequently,a contour plot of the characteristic velocity vs initial true anomaly and transfer time is obtained and analyzed so as to carry out the mission planning,which provides vital initial information for the minimum fuel consumption finite-thrust rendezvous.Then,based on mission planning analysis,finite thrust optimal control model of the fuel-optimal rendezvous is established.The optimal control problem is then translated into a two-point boundary value problem,which is numerically solved by the conjugate gradient method.For fixed transfer time and continuous variable thrust,the magnitude and direction of the thrust are optimized with terminal position and velocity constraints to minimize the cost.From numerical simulations,some attractive and vital conclusions are obtained,which can provide powerful tools for applications.
关 键 词:空间交会 轨道优化 任务规划 燃料最优 有限推力 Battin-Vaughan算法 共轭梯度法
分 类 号:V421.41[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7